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Classes of functions for shear moduli which depend on a cylindrical system of coordinates are singled-out 

and general solutions for the stress and displacement functions are constructed in the form of a finite 

integral operator consisting of completely defined variable coefficients and an arbitrary analytic function of 

a complex argument. An example of the solution of the problem with mixed boundary conditions of the 

torsion of a hollow cylinder, one end of which is rigidly clamped, is given. 

1. FUNDAMENTAL EQUATIONS. GENERAL SOLUTION 

THE TORSION of an anisotropic non-uniform solid of revolution in a cylindrical system of coordinates r, 8, z 

(where z is directed along the axis of symmetry) is characterized by the following linear system of elliptic-type 
equations [l, 21 

(1.1) 

Here 9 is the stress function, cp is the displacement function, and G BZ = Gr (r), Gti = Gz(r) are the shear 
moduli. 

Here, the force stresses T BZ = ~r(r ,z), rfi = ~(r, z) and th e d’ rsp acement U, = u(r, z) are defined in terms of 1 
the functions I(, and cp by the formulae 

* = L arL=& 2x. 1 a-4 a9 
L r’ ar ’ az ’ 

r1 =---=rGl--, 
.r2 a2 v=r9 (1.2) 

while the torque at the end z = 0 is given by the formula 

M = 2n J r’r,dr = 2n[J, (r, , 0) - J/ (r, , O)] 
11 

(1.3) 

For arbitrary shear moduli, which depend on the radius, a genera1 solution of system (1.1) was constructed in 
[3] in the form of complex infinite integral and differential series. 

We will single-out classes of functions for the shear moduli which enable us, for system (l.l), to construct a 
genera1 solution in the form of a finite operator. 

Henceforth we will consider the case when r # 0 (a hollow cylinder). 

2. CONSTRUCTION OF THE GENERAL SOLUTION 

We will seek a solution of system (1.2) in the form of an integral operator 

G =Re(ol(r)f(S)+AIf(5)dSl 

7 = Im lNr)fU) + BlftO &I 
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Here A and B are arbitrary constants, (Y(T), p( ) r are real functions of one argument r, andf([) is an arbitrary 
analytic function of the complex variable 

f=_ipdr+iz (p= J761;1;3 (2.2) 
We will construct the corresponding derivatives of expressions (2.1) and introduce them into the system of 

equations (1.1). As a result, using the well-known properties of analytic functions of a complex variable and 
dropping the signs Re and Im, we obtain the following two equations 

(a’ - Br)G, + Ap)f+ (ap - r’G,P)f’ = 0 (2.3) 
[?G,(fl’+Bp)-A]f+(r’GIPp-u)f’=O 

which are satisfied, for an arbitrary functionf@), if we impose the following conditions on a, p 

OL = B$r’G,dr - A/pdr, fl=,&_ 
PG, 

BjPdr 

u=r3mflp‘ (2.5) 
In (2.4) we have omitted the additive constants of integration as being unimportant. 
It can be shown by substitution that when A = 1 and B = 0, Eq. (2.5) is satisfied, for example, for the 

following shear moduli 

1) G, =arp, G, = br4 (q = ( p - 2)/3) (2.6) 

2) G, =arm3ePr, C, =br-‘e4’ (q =d3) (2.7) 

3) G, =aPIn’r. G, =br-‘In’r (2.8) 

Here a and b are constants, p is an arbitrary number (integer, fractional, positive or negative), which can be 
used when approximating the shear moduli. 

When A = 0 and B = 1, condition (2.5) is satisfied for the moduli (2.6) when q = 2p + 10, while for the 
moduli (2.7) it is satisfied when q = 3p. For the functions (2.8), Eq. (2.5) cannot be satisfied. 

When A #O, B #O, condition (2.5) is only satisfied for the function (2.6), where p = -4 and q = -2. 
Equations (2.6)-(2.8) are suitable when r#O, that is, for determining the stress state of hollow cylinders. For 

each case (2.6)-(2.8) the functions (Y, p 6 and p, $ (2.1) take a specific form. 
Shear moduli of the form (2.6) when p = q (p = +l, p = +2) and when q = p + 2 (p # -4 andp = -4) were 

considered in [2] when determining the stress functions in a different way in the form of series containing Bessel 
functions of the first and second kind of imaginary argument ir; cases were singled-out when they degenerate 
into hyperbolic or power functions with complex exponents. 

If in (2.1) the functionf(J’) is specified arbitrarily in the form of a power or some other elementary analytic 
function of a complex variable, then, like their sums, they will all give a whole set of different inverse boundary 
value problems, some of which may turn out to be useful in practice. 

To solve the direct boundary value problem, we will take the function f(l) in the form of a converging 
exponential series [4] 

f(r) = x n -* (a,enwr + b,ewnw*) (2.9) 

in which a, and b, are arbitrary real numbers (in general, complex), and w is the characteristic number of the 
specific problem, determined from the boundary conditions. Here and henceforth the summation is taken from 
n=-1ton=m. 

3. A HOLLOW CYLINDER WITH MIXED BOUNDARY CONDITIONS ON THE SIDE OF 
SURFACES 

Consider a non-homogeneous hollow circular cylinder of length 1 with internal radius rl and external radius 
r2. Suppose that the displacement is specified on the internal surface, while the surface force is specified on the 
external surface. We will assume the end z = I is rigidly clamped (a cantilever), while forces are applied to the 
free end (z = 0) leading to a torque (1.3). 

We will introduce the function (2.9) into (2.1) (A = 1 and B = 0) and we will separate the real and imaginary 
parts. We obtain the following expressions 
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JI=I:n~‘[(a+(n~)~‘)a,e”~~+(a-(nw)“)b,e~”~~]cosnwz 

q =BZn-‘@,enWP - bneenwP) sin(nwz) 

(3.1) 

and the boundary conditions 

ub=r, =r,f,W, -3 
az r=r 

I 

=fi(z), ;I5_= $_=o (3.2) 

Note that if in (3.1) we change from exponential to hyperbolic functions, we obtain a result similar to that 
obtained earlier [2]. 

The last two conditions of (3.2) will be satisfied if we put o = 7421) and II = 1, 3, 5, . . . , or, which is the 
same thing, replace n by 2k+ 1 (k = 1, 2, . . .). The first two conditions in (3.2) will also be satisfied if the 
functions ft (z) and A(z) are expanded in terms of sin wz in the range 0 s z S 1 and we then use the usual Fourier 
method. Doing this we obtain 

a,= D+/A, b,= D-/A, A=A++A_ 

D,=-e 
Tnwp, En nc, 

‘-$ BAT) 
1 

A*=@, f L)e 
‘nw@,--P,) 

ItW 

2 ’ I 
Cn = - J f, (z) sinnwzdz, 

1 0 
B, = f Cfi (z) sinnwzdz 

q=aVf), P{=PVi) (i= 1,2), 8, =8(rr) 

(3.3) 

Equations (3.1) and (3.3) naturally relate to an equal extent to any of the three combinations of shear moduli 
(2.6)-(2.8). No difficulties arise in calculating the torque (1.3) at the free end z = 0. 

Note that if we introduce the notation F(l) = Jf(c)& into (2.1) these functions take the form of a 
differential operator. 
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